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An equation of state is obtained in closed form for a gas composed 
of molecules with Lennard-Jones (n,%n) potentials. It is useful at 

temperatures above about 12 (€/k) , where -€  is the minimum energy of 
interaction and at all densities at which the equilibrium state is a 

fluid. 

virial expansion that occur in the approximation for the pair distribu- 

tion function proposed by Percus and Yevick. 

is represented correctly to terms of the order of 

It is derived by sunnning over all the cluster integrals of the 

Each cluster integral 
-1 n . 

The equation agrees well with machine calculations of the pressure 

of dense gases for n = b o  and n = 12 , with static measurements of 
the comprtwion of gases at high reduced temperatures, and with sunxe 

preliminary measurements of the density of argon compressed by shock- 
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AN EQUATION OF STATE OF GASES AT HIGH TEMPERATURES AND DENSITIES 

1. Introduction 

In 1958 Percus and Yevick suggested 8 new approximation in the 

theory of fluids which has since been derived and expressed in several 

ways [l - 5 1  . The original formulation, which is used here, leads 
to an expansion of the pair distribution function in powers of the 

density, the coefficients of which are some, but not all, of the open 

cluster integrals of the exact expansion of Mayer and Montroll 

Such a series is equivalent to an expansion of the pressure in powers 

of the density in which the coefficients are a selection from the com- 

plete set of irreducible cluster integrals. These approximate virial 

coefficients are of a particularly simple form for an assembly of hard 

spheres for which the expansion can be summed over all powers of the 
density to obtain the equation of state in closed form. 

and Thiele 

obtained directly from the equationsof Percus and Yevick without recourse 

to an expansiolr in powers of the density. 

[ 6 ]  . 

Wertheim [ 4 ]  

[ 5 ]  have shown recently that this closed form can be also 

Theseresults are extended here to a gas between whose molecules 

there is a Lennard-Jones (n,*) potential. The extension can be made 
only at temperatures where the repulsive forces are dominant, that is, 

at temperatures above about 12 (€/k) where -f is the minimum energy 

of interaction. The equation of state can be used for the calculation 

of the properties of fluids compressed by strong shock-waves and of the 
properties of the products of the detonation of explosives. 

The Lennard-Jones (n,h) potential for a pair of molecules 

separated by a distance B is 
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2. The C lus t e r  I n t e g r a l s  

3 

The expansion of t h e  p a i r  d i s t r i b u t i o n  func t ion  R (R ) i n  powers 2 12 
of t h e  d e n s i t y  has c o e f f i c i e n t s  t ha t  a r e  func t ions  of t h e  sepa ra t ion  of 

molecules 1 and 2. Each c o e f f i c i e n t  is  obtained by i n t e g r a t i n g  f a c t o r s  

f(R..) over a l l  p o s i t i o n s  of one o r  more add i t iona l  molecules, where 
13 

Thus t h e  c o e f f i c i e n t  of t h e  f o u r t h  power of t h e  dens i ty  is  t h e  c l u s t e r  

i n t e g r a l  shown schematically as c3 i n  Figure 1. The c o e f f i c i e n t  of 

t h e  f i f t h  power is  formed from th ree  c l u s t e r  i n t e g r a l s ,  shown schemat- 

i c a l l y  as d4, d5 and d6 . The compress ib i l i ty  i s  obtained by 

s u b s t i t u t i n g  n (R ) i n t o  t h e  exact equat ion of Orns te in  and Zernike, 2 12 

where (N/V) is  t h e  number density.  This equation i s  inver ted ,  expanded 

by t h e  binomial theorem, and in tegra ted  wi th  respec t  t c  d e n s i t y  t o  ob- 

l -  
~ 

i 
I -  

t a i n  t h e  f a m i l i a r  v i r i a l  expansion f o r  t he  pressure ,  whose c o e f f i c i e n t s  

are C3 , D4 , D5 , D6 e t c .  of Figure 1. (The use of (2.2) i s  more 

accura te  f o r  hard spheres than  t h e  d i r e c t  c a l c u l a t i o n  of p 
v i r i a l  theorem, f o r  reasons which have been discussed elsewhere [7] ). 

The approximation of Percus and Yevick f o r  can be expressed 

[1] by t h e  r u l e  t h a t  only those  open c l u s t e r  i n t e g r a l s  are included 

t h a t  can be w r i t t e n  e i t h e r  as simple cha ins  from molecule 1 t o  molecule 

2 (eg. c3 and d4 ) o r  which can be formed from simple chains by 

in t roducing  i n t e r i o r  bonds t h a t  do not c ros s  each other.  

such as d5 are included, bu t  d6 is  not. The omission of d6 from 

n,(R) leads t o  t h e  omission of D6 from t h e  pressure.  The terms t h a t  

are re t a ined  i n  p are those  whose c a l c u l a t i o n  i s  t h e  simplest .  I f  

from t h e  

n2(R12) 

That is, terms 

ecomes t h e  molecules are hard spheres of d iameter  
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i n f i n i t e  i n  (Ll), then a l l  t h e  required c l u s t e r  i n t e g r a l s  are r a t i o n a l  

f r a c t i o n s  of t h e  appropr ia te  power of bm , where 

2 3 b = 7 z N R m  m (2.3) 

Rushbrooke [ 8 1  has r ecen t ly  ca lcu la ted  t h e  f i r s t  s i x  c o e f f i c i e n t s  

c = P b : ,  D = -  I 9 b 3  , E = -  31 b4 F=:- 23 b5 (2.4) 
B = b m ,  6 4 m  256 m ' 512 m 

The second d i f f e rences  of t h e  numerical p a r t s  of t hese  c o e f f i c i e n t s  are 

constant,  hence t h e  c o e f f i c i e n t s  can be expressed as a quadra t ic  func- 

t i o n  of t h e  order,  q , of the  v i r i a l  c o e f f i c i e n t .  I f  L is t h e  

qth 
9 

vi r ia l  c o e f f i c i e n t  then the  gene ra l i za t ion  of (2.4) i s  

S u b s t i t u t i o n  of (2.5) i n t o  t h e  v i r i a l  expansion gives a series which 

can be sumned t o  the closed form 
z 

I +  F 4 '  

where 

The second and t h i r d  c o e f f i c i e n t s  of (2.4)-(2.7) are c o r r e c t ,  t h e  

f o u r t h  exceeds the  t r u e  value [g] by a f a c t o r  of 1.0346, and t h e  

f i f t h  exceeds a value obtained by d i r e c t  c a l c u l a t i o n  1 7 1  by a f a c t o r  

of 1.100. 
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3. The Lennard-Jones P o t e n t i a l  

Two important f e a t u r e s  of t he  approximation of Percus and Yevick 

f o r  t h e  hard spheres are,  f i r s t ,  t h a t  t h e  v i r i a l  expansion can be 

summed and, secondly, t h a t  t h e  ind iv idua l  c o e f f i c i e n t s  are u m s u a l l y  

accu ra t e .  

a l l  i n t e g r a l s ,  such as D6 , i n  which t h e  numerical c o e f f i c i e n t s  of 

(b,) q-l are i r r a t i o n a l .  All t h e  c l u s t e r s  t h a t  a r e  r e t a ined  have 

in tegrands  t h a t  are r e l a t e d  t o  the  volume common t o  two overlapping 

spheres. The integrand of C3 is j u s t  t h i s  volume, and t h e  in tegrands  

of 04 , D5 and of t h e  admitted p a r t s  of E are such volumes in t eg ra t ed  

f u r t h e r  between r a t i o n a l  limits r7, 1 0 1  . Such simple r e s u l t s  cannot 

be expected f o r  a func t ion  as  complicated as a Lennard-Jones p o t e n t i a l ,  

f o r  which an exact expression can be obtained only for B . This i s  

usua l ly  w r i t t e n  as an i n f i n i t e  s e r i e s  of f a c t o r i a l  functions.  The 

l i m i t i n g  va lue  of C 

The f i r s t  p roper ty  i s  a consequence of t h e  exc lus ion  of 

at high temperatures can be expressed by these  

func t ions  t o  an accuracy of terms of t h e  order of n-3 only ill] . 
The l i m i t i n g  values of '04 and 0 5  have been obtained co r rec t  only 

t o  n-' -1 [12] . It i s  unl ike ly  t h a t  an accuracy g r e a t e r  than  n 

can be  achieved f o r  any of t h e  higher c l u s t e r  i n t e g r a l s  without 

recourse  t o  numerical i n t eg ra t ion  and hence- wi th  the  loss of t h e  power 

of summation. I n  t h i s  paper, therefore,  t h e  r e s u l t s  prev ious ly  ob- 

ta ined  f o r  D4 and D5 a r e  f i r s t  extended t o  lower temperatures and 

then applied t o  a l l  c l u s t e r s  included i n  t h e  approximation of Percus 

and Yevick. 

~. - .  

All func t ions  t h a t  occur i n  t h e  integrands of C3 , D4 , D5 etc. 

are of t h e  form 

where r i s  a reduced d i s t a n c e  

1: RJR m (3.2) 

j i s  an exponent t h a t  lies i n  t h e  range ( 0  < j < %n) , and a and 



b are simple func t ions  of the separations of some of t h e  molecules i n  

t h e  c l u s t e r .  I f  f ( r )  can be approximated by a step-function, 

f ( r )  = -1 

f ( r )  = 0 r < p  r ' P  3 (3.3) 

then t h e  eva lua t ion  of i n t e g r a l s  such as (3.1) i s  no more d i f f i c u l t  f o r  

a (n,.fin) p o t e n t i a l  than  f o r  hard spheres,  and leads t o  s i m i l a r  r a t i o n a l  

expressions f o r  t he  v i r i a l  coe f f i c i en t s .  However, t h i s  s t e p  i s  use fu l  

only i f  f ( r )  can be accu ra t e ly  represented by the  form ( 3 . 3 ) ,  and i f  

t h e  d i s t ance  P i s  independent of t h e  exponent j i n  (3.1). I f  t he  

temperature is  high then f ( r )  i s  almost equal t o  -1 a t  a l l  sepa ra t ions  

less than  about x ' '~  , 
temperature, is  small. 

where x , t h e  r ec ip roca l  of t he  reduced 

The func t ion  f(r) is almost zero a t  l a r g e r  separa t ions .  It is  exac t ly  

, has a maximum of (eX - 1) a t  r = 1 , and tends zero  at r = 4 
t o  ze ro  as 

be defined by 

- ( l h )  

P r becomes i n f i n i t e .  As before 1 1 2 7  , let  t h e  d i s t a n c e  

The subsc r ip t  j i s  added t o  P since,  i n  general ,  t he  d i s t a n c e  defined 

by (3.5) w i l l  depend upon t h i s  exponent. The i n t e g r a l s  I(x) were f i r s t  

s tud ied  by Lennard-Jones and t h e i r  p rope r t i e s  have r e c e n t l y  been sum- 

marised [lg . From t h e  f i r s t  and t h i r d  p a r t s  of (3.5), 



7 
Expand I(x) i n  powers of x # 

R 
(44-h - 1 )  (2x" ,  

(3.7) 
*&I* 2 

n . 4?! 4.0 

This func t ion  can be w r i t t e n  as a func t ion  of x , r a i sed  t o  the power 
-1 

j , by t h e  neglec t  only of terms smaller than n . The f i r s t  f a c t o r i a l  

can be expanded around O! [ll] , and all terms ( j /n )  

from t h e  sum. 

can be omitted 

. .  

(3.10) 

(3.11) 

and is  Euler ' s  constant,  0.577216". P(x) is  c l o s e l y  r e l a t e d  t o ,  

but cannot be obtained from,the s e r i e s  used t o  c a l c u l a t e  

(n,kn) p o t e n t i a l .  It is  tabulated i n  t h e  Appendix. Thus p i s  inde- 

p e n d e n t d  j ( t o  terms of the order of n ) and can be w r i t t e n  

B f o r  a 

-1 



(3.13) 

This  d i s t ance  i s  a measure of  t h e  e f f e c t i v e  rahge of t h e  r epu l s ive  

forces .  If  n i s  i n f i n i t e  then  p i s  u n i t y  a t  a l l  temperatures.  I f  

n i s  f i n i t e  then p depends upon the  temperature, both d i r e c t l y  

through x l'n and a l s o  through t h e  e f f e c t s  of t he  a t t r a c t i v e  fo rces  

which en ter  through the  sum i n  F(x) . I n  the  l i m i t  of high temperatures 

F(x) = y and 

( 3 . 1 4 )  

The equation of state can now be obtained a t  once from t h e  r e s u l t s  

of Sect ion 2 s ince,  a t  each temperature, t h e  molecules can be represented 

i n  every c l u s t e r  i n t e g r a l  by hard spheres of diameter 

i s  aga in  given by (2.6) where i s  now defined by 

. The pressure  P 

* 
The configurat ion energy of t h e  gas, U , i s  obtained by t h e  

in t eg ra t ion  from zero t o  an a r b i t r a r y  dens i ty  of 

(3.15) 

(3.16) 

It i s  given by 

u* = +<pv - NkT) (3.17) 

where 



- % ,B e(%) 
d X  

C(x) is also tabulated in the Appendix. 
At high temperatures 

(3 .18)  

(3 .19)  

(3.20) 

(3.21) 

(3.22) 

This result is exact for molecules that repel as 

intermolecular energy of such molecules is a simple multiple of the 
intermolecular virial, 6 R. du(R)ldRJ 

Ron , since the 

4. The Virial Coefficients 

The qth virfal coefficient is now 

9 

If n is infinite these coefficients reduce to ( 2 . 4 ) - ( 2 . 7 )  at all 

temperatures. Figures 2-4 are a comparison of (4.1) with directly 

calculated coefficients [11-15] for the commonly used value of n = 12 . 
A co-volume b is used instead of bm in these Figures to conform 
with the usual convention. 

0 
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These Figures show also the coefficients calculated for a repulsive 

pot en t ial 

, where (4.3) 

It is seen that the coefficients calculated from (4.1) all lie below 

the true coefficients at high temperatures. The discrepancies are 
small and arise from the neglect of terms higher than n At low 
temperatures B exceeds the true value, whilst C and D lie below 
it. B is the cluster integral that is most sensitive to the effects 

of the attractive forces. Equation (4"1), with q = 2 , is correct to 
nW1 in the sense that the exact expression for €3 

written in this form at all temperatures by neglecting only terms of 

the order of n . However, in practice, the approximation is useful 

only for reduced temperatures above about 12. C is correct to the 

-1 

[ 1 3 ]  can be 

-2 

same order at high temperatures ell] whilst D and higher coefficients 

suffer a little from the neglect of certain clusters in the equations 

of Percus and Yevick. Nevertheless the agreement at high temperatures 

for all coefficients is most satisfactory. 

This equation of state does not predict a liquid-vapour transition. 

All virial coefficients vanish at a Boyle temperature at which F(x) = -n . 
The configuration energy is positive at all densities if the temperature 

is above that of the maximum of the virial Coefficients. This tempera- 

ture is determined by 

(4.4) 
-1 G(x) - n .F(x) = 1 

This temperature is almost independent of n and is near x = 0.12 

or T =  8 .  
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5. Comparison with Experiment 

This equation of state is compared below with three kinds of 

experiments. 

made by Monte Carlo and other numerical techniques for n = 80 and 

n = 12 . A comparison with these results is a direct test of the 

equation. 
of the pressures of helium, neon and hydrogen at high densities and 

Calculations of the pressures of dense fluids have been 

Static measurements have been made by conventional techniques 

reduced temperatures. 

eters n , & and R are known. However there is direct evidence m 

These can be compared with theory if the param- 

e161 that this form of potential is not suitable at temperatures and 

densities when the repulsive forces are dominant, and so the comparison 

is not so direct a test of the equation as is the comparison with 

machine calculations. Finally, the equation is used to calculate the 

pressure and temperature of a gas compressed to a high density by a 

strong shock-wave. 

Figure 5 is a comparison of (2.6) with the machine calculations of 

Alder and Wainwright for n =&y) . Two smooth curves have been drawn 

through their results, one of which is the fluid and the other of which 

is the solid state. There is probably a first-order transition at a 

reduced pressure of 4.2. It is seen that the approximation of Percus 
and Yevick is an excellent representation of pressure of the fluid phase 
but that it canDot (since all its virial coefficients are positive) 

show the transition to an ordered phase. It cannot be used, therefore, 
to represent the equilibrium state for 
There is also shown in the Figure an empirical equation of state which 
Kihara and Hikita [18] devised for molecules repelling as B in 

order to represent the properties of the products of detonations, and 

which has been so used by Fickett, Wood and Salsburg E191 . 
equation is correct at low and high densities (where it approaches the 

pressure of ordered phase) but is seriously low at the intermediate 
densities of the compressed fluid. 

> 0.45 , or (pv/lJkT) > 10 a 

-n 

This 

Figure 6 is a comparison of the equation of state for n = 12 

with the Monte Carlo calculations of Wood and Parker &20] at two high 

temperatures. There is again good agreement although the calculated 
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pressures  may b e  a l i t t l e  high, as i n  Figure 5. However p a r t  of t h e  

small discrepancy a t  low d e n s i t i e s  may be i n  t h e  Monte Carlo r e s u l t s  

s ince  t h e  calculated curve is almost i nd i s t ingu i shab le  from t h e  co r rec t  

four-term v i r i a l  expansion f o r  reduced d e n s i t i e s  below 0.7.  The 

pressures  a t  t h e  highest  d e n s i t i e s  shown would be about 30 kb ( a t  ?f = 20) 

and 100 kb (at  = 100) f o r  argon. 

Figure 7 shows t h a t  a (12,6) p o t e n t i a l  recommended f o r  helium 

0 
He 1. ium Rm = 2 . 8 8  A E /k = 1.0.8OK n -. 12 ( 5 . 1 )  

can be  used wi th  t h i s  equat ion of s ta te  t o  f i t  w e l l  t h e  r e s u l t s  of 

Wiebe, Gaddy and Heins [22] which extend t o  1 kb. The excel lence 
0 of the  agreement a t  -70 6 may be p a r t l y  f o r t u i t o u s ,  s ince  no quantal  

cor rec t ions  have been used. 

There is no o the r  gas f o r  which measurements are ava i l ab le  a t  so  

high a temperature and dens i ty .  

hydrogen, for  which the  measurements of Michels and h i s  col leagues 

The next most s u i t a b l e  are neon and 

1 2 3 1  extend t o  15OoC and 3 kb. This  i s  a reduced temperature of 

about 11 for  both gases and Figure 8 shows t h a t  the ca lcu la ted  pres-  

su res  are a l i t t l e  too  high when t h e  following parameters are used 

Neon R = 3.09  E: /k = 35.7OK n = 12 ( 5 . 2 )  m - 

Hydrogen Rm = 3 .30  € /k = 37.0°K n = 12 (5 .3)  

The f a u l t  is p r i n c i p a l l y  i n  the  i n i t i a l  s lopes  of t he  isotherms, as i s  

shown by t h e  high ca lcu la ted  value of t h e  second v i r i a l  c o e f f i c i e n t  

a t  t h i s  temperature (Figure 2). 

Wackerle and Hughes [24] have measured t h e  pressure  and dens i ty  

of argon compressed by a strongshock-wave from an i n i t i a l  s tate of 

.4R 3 -1 = 298OK Uo = - 3 2 . 2  kb c m  mole 
3 -1 

TO 
= 1 kb v = 41.1 c m  mole 

0 
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The s ta te  of t he  gas a f t e r  compression can be ca lcu la ted  by solving 

simultaneously the  eq ia t ion  of s t a t e  and 3dgonict ' s  condition9 

u - uo + +(p + Po)(V - V0) = 0 (5*4) 

For argon, and t h i s  equation of s t a t e  

t 3 U - Uo =: U - Uo 9 5 Nk(T - To) 

* 3  - -  3 
= pV. 0 + NkT(z - 0) - Uo NkTo 

(5.5) 

(5.6) 

where 0 i s  defined by (3.18). This equat ion i s  use fu l  i f  the  reduced 

temperature of t he  shocked gas i s  above 12(€ /k) . It i s  not necessary 

f o r  t h e  i n i t i a l  s tate t o  be at so high a temperature i f  experimental 

values  of p and Uo are used. This  temperature i s  achieved i n  

argon a t  pressures  above about 40 kb wi th  the  i n i t i a l  s tate defined 

above. Figure 9 shows two calcuaated curves. 

used (12,6) p o t e n t i a l  for argon c13, 211 

* 
0 

One i s  f o r  t h e  commonly 

0 
Argon Rm = 3.83 A e l k  = 119OK n = 12 (5.7) 

and t h e  second f o r  a p o t e n t i a l  with the  same Rm and (€  /k) but wi th  

n = 9  

0 
A r  Ron Rm = 3.83 A e l k  = 119% n = 9  (5.8) 

Equation (5.7) exceeds t h e  t r u e  po ten t i a l  f o r  argon by a f a c t o r  of 

between 4 and 10 f o r  separa t ions  in  t h e  range 2.1 - 2.9 A , which 

is  t h e  range of the  mean separat ion of neares t  neighbors i n  the  shocked 

gas. The t r u e  p o t e n t i a l  a t  these  separa t ions  was measured by Amdur and 

Mason [25] from t h e  s c a t t e r i n g  of molecular beams, and i s  represented 

by (5.8). Amdur and Mason recommend a purely repuls ive  p o t e n t i a l  wi th  

an index of n = 8.3 for  these  separat ions but (5.8) appears t o  be 

t h e  bes t  p o t e n t i a l  t h a t  passes through t h e i r  po in t s  and ye t  has a 

0 
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r ea l i s t i c  value of Rm and ( t : /k )  . The two experimental  po in t s  of 

Wackerle and Hughes l i e  c lose  t o  t h e  Hugoniot c m v e  ca lcu la ted  from 

t h i s  po ten t i a l .  

6 .  Conclusions 

The comparisons of theory and experiment descr ibed i n  t h e  l a s t  

s ec t ion  were made without t he  in t roduct ion  of any ad jus t ab le  parameters. 

Their  success suggests  t h a t  t h i s  equat ion of s t a t e  i s  s u b s t a n t i a l l y  

accura te  at  temperatures above and a t  a l l  pressures  less 

than t h a t  of any t r a n s i t i o n  t o  a s o l i d  phase, t h a t  is, below about 

10 bar  a t  these temperatures. It should the re fo re  be r e l i a b l e  f o r  

ca l cu la t ions  of t h e  pressures  of s t rong ly  shocked f l u i d s  and of t h e  

12(E Ik) 

6 

prope r t i e s  of t he  products of detonat ions.  I ts  p r inc ip  “J l i m i t a t i o n  

i s  i t s  r e s t r i c t i o n  t o  a Lennard-Jones p o t e n t i a l .  
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Appendix 
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Legends for  Figures  

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

(no legend) 

The ca lcu la ted  and exact second v i r i a l  c o e f f i c i e n t  f o r  

n = 1 2  

The ca lcu la ted  and exact  t h i r d  v i r i a l  c o e f f i c i e n t  f o r  

n = 1 2  

The four th  v i r i a l  c c e f f i c i e n t  ca lcu la ted  from (4.1) and 

the  values computed by Boys and S h a v i t t  ( c i r c l e s )  and by 

Barker and Monaghan (arrows) f o r  n = 12 

The reduced pressure  as  a func t ion  of t he  dens i ty  E 
n =Oo The f u l l  curves are the  machine ca l cu la t ions  of 

Alder and Wainwright. The dashed curves are discussed i n  

the  t e x t .  The v e r t i c a l  l i n e  i s  a t  t h e  dens i ty  of c l o s e s t  

packing e 

The ca lcu la ted  compression f a c t o r s  a t  7 = 20 

f o r  n = 1 2  . The poin ts  a r c t h e  Monte Carlo c a l c u l a t i o n s  

of Wood and Parker.  

The compression f a c t o r  of helium. The f u l l  curves are 

experimental  and the  dashed curves are  ca l cu la t ed ,  

The compression f a c t o r s  of neon and hydrogen a t  15OoC. 

The f u l l  curves are experimental and the  dashed curves 

a r e  ca lcu la ted  

The Hugoniot curves f o r  argon f o r  t h e  p o t e n t i a l s  (5.7) and 

(5.8).  The experimental  po in ts  of Wackerle and Hughes 

a r e  shown wi th  t h e i r  estimates of t he  experimental  e r r o r .  

f o r  

and ?? = 100 
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